AMD Ryzen 7 3700X review: can gaming performance compete with Intel?

The buzz surrounding the third generation Ryzen has been extraordinary, with AMD’s new range of processors taking the fight to Intel’s incumbent CPU champions in seemingly spectacular style. The basic AMD formula remains the same – more cores, more threads and more performance for less money – but a range of architectural improvements and a massive increase in cache size sees Team Red attempting to address Ryzen’s weaknesses in single thread performance. At the same time, the firm has moved to 7nm chip fabrication, meaning that AMD actually has a process advantage over Intel for the first time, meaning smaller, cooler, more power-efficient products than the Intel competitors.

Meanwhile, AMD hasn’t been sitting still of the chip, either. The Ryzen 7 3700X ships with a really good cooler in the box (something Intel doesn’t do on its higher end products) while the new line of processors supports PCI Express 4.0 bandwidth when paired with a new X570 chipset motherboard. Socket AM4 remains the primary interface between CPU and board and as long as you update the BIOS, the vast majority of older boards should be able to handle the new chips. AMD also gets bonus points here for allowing overclockable memory to run on both mid-range and high-end boards, meaning you should still get good performance from third-gen Ryzen even with older motherboards using the B350 chipset.

AMD has launched a full product stack for Ryzen 3000, but unfortunately, owing to a pile-up in GPU releases, this review is somewhat late. We have both the 12-core Ryzen 9 3900X and the six-core Ryzen 5 3600X waiting in the wings, but the focus of this review is on the eight-core/16-thread Ryzen 7 3700X. The last-gen Ryzen offerings failed to convince in gaming up against Intel equivalents including the quad-core i7 7700K, the hexa-core i7 8700K and of course, Intel’s own octo-core 9900K. However, the architectural advancements here should blunt some of Intel’s inherent advantages.

Prior Ryzen chips used two quad-core CCXs in a single chip, the disadvantage being that communication between the two clusters was defined by the speed of your DDR4 memory. That meant that tasks which crossed over between CCXs could be hindered by excessive latency, creating a reliance on fast RAM in a market where prices for performance modules were very, very high. Ryzen 3000 addresses this issue firstly by leveraging 7nm technology – a CCX now consists of just one octo-core cluster. Secondly, L3 cache is essentially doubled, which AMD says addresses latency issues comprehensively.